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LETTER TO THE EDITOR 

q-analogues of some prototype Berry phase calculations 

S K Soni 
Physics Department, SGTB Khalsa College, University of Delhi, Delhi-1 10007, India 

Received 4 July 1990 

Abstract. Following the work of Macfarlane and Biedenharn we calculate Berry’s phase 
for the SU(2), model, the q-analogue of the displaced harmonic oscillator, and the 
generalized q-harmonic oscillator. We discuss the unusual features of our results. 

Recently Biedenharn [ 13 and Macfarlane [2] have shown to the physics community 
an elegant and simple way of obtaining certain remarkable results in SU(2),, a quantum 
deformation of the universal enveloping algebra of the simplest Lie algebra SU(2). 
The really interesting issue is the physics behind the q structure. We take a small step 
in that direction in this letter. Using a q-analogue of the angular momentum and the 
boson operator calculus [ 1,2], we shall q-extend certain known results for Berry phase 
calculations [3]. It may be recalled that Berry’s phase refers to the extra phase that 
the wavefunction of a system can acquire under adiabatic cycling of the parameters 
upon which the Hamiltonian depends. This phase is geometrical in the sense that it 
depends only on the cycle the system follows in the space of its parameters, and not 
on the time taken for this adiabatic excursion. 

Let us first consider spins in magnetic fields. A particle with spin j ( j  = 0, 4, 1, . . .) 
interacts with magnetic field via the Hamiltonian 

H ( B )  = khB J (1) 

where k is a constant involving the gyromagnetic ratio and J is the self-adjoint vector 
spin operator whose components Jx ,  J y ,  J, generate the commutator algebra of the 
‘quantum group’ SU(2), defined by the relations 

[Jz, J*1= *J* 

[ J + ,  J-I = [2 J31. 

Here J+ = Jx * iJy and we have introduced the abbreviation 

q x  - q-x  sin h ( s x )  
q - q  s inh(s )  

[XI=-= (4) 

where q = exp(s), s is real and positive, so that the right-hand side of (4) approaches 
x as s + 0. This limit becomes the familiar classical limit h + 0 if we let s = h. Thus we 
can say that (2) and (3) define a quantum deformation (using q as the deformation 
parameter) of the classical lie algebra of SU(2). Jimbo [4] has shown that there exists 
one representation of (2) and (3) for each spin j (integer or half-integer) with 2 j +  1 
eigenvalues m with integer spacing and that lie between - j  and +j.  To return to our 
Berry’s phase calculation, we consider the components of B as the external parameters 
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and calculate the phase change ym(C) of an eigenstate Im,j(B)}  of the Hamiltonian 
(1) as B (and hence the spin pointing in that direction) is slowly rotated around a 
circuit C. 

The quantum deformation has no effect on the energy eigenvalues 

Em(B) = mkhB. ( 5 )  
Note that there is a (2j  + 1)-fold degeneracy when B = 0. The various matrix elements 
of J ,  in the Ijm) basis are given by Jimbo. One has 

An interesting consequence of ( 6 )  can be read directly without any detailed calculation. 
The electronic Hamiltonian of a molecule in the neighbourhood of a diabolical point 
can be treated as a pseudospin-; particle [3], for which the q-deformation does not 
modify the Hamiltonian and hence Berry’s phase. Thus the geometrical phase factor 
is ( m  = *f) 

exp{iy,(c)} =exp{-imn(C)}, (7) 
where a( C )  is the solid angle C subtended at B = 0, the location of the degeneracy 
(i.e. the diabolical point). In the case whenj  > i, the matrix elements of J ,  are deformed 
and the adiabatic phase factor becomes 

exp{iy,(C)} = exp{-;[2m]a(C)}. (8) 
To see this, recall that Berry has shown that the points of degeneracy in the parameter 
space act as sources of the phase 2-form. For (1) we have(using kquations (9) and 
(10) in ~ 3 1 )  

where 

In order to evaluate the matrix elements in (10) we temporarily rotate axes so that 
the z-axis points along B and we get 

Substituting (11) into (9) gives 

. .  
s:as=c 

Reverting to unrotated axes we obtain (in the familiar three-dimensional language) 

S 

implying our promised result (8). 
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As another example consider the q-analogue of the displaced harmonic oscillator 
given by the Hamiltonian 

6 = hw[  (a+a* ) (a  + a )  +;I. (14) 

Here a and a* are the adiabatic parameters, and a (a+) is a q-analogue of the 
annihilation (creation) operator [ l ,  21. This system can be considered as a contraction 
limit of the SU(2), Hamiltonian 

H = h J *  B (15) 
with 

J, * i Jy B,=tiB, B, =- 
2 .  J, = - 

2 

From the matrix elements of H between Ijm) states we have 

H = hB, 1 mljm)(jml + ( h B - / a J [ j -  m][j+ m + 11 / jm+ l)(jml 
+ j  

m = - j  

+ h B + / f i d [ j +  m ] [ j -  m + 11 Ijm - l ) ( jm/) .  (17) 
As long as the Hamiltonian matrix is finite dimensional, we are free to relabel the states 

m+ m’= m+j  
21 

H = hB, 1 (m’ - j ) [ jm’ ) (m~l  
m’=O 

2J 
+hJ[jl 1 {[m’+1]’’*1j, m’+l)( j ,  ~ ‘ I + [ m ’ I ~ ’ ~ l j ,  m‘- i ) ( j ,  m’l) 

+ O ( f i / m ) .  (19) 

m’=O 

Now we take the contraction limit 

j + a  

in such a way that 

m B*/B 
remain finite. We drop the term X!f-o j & ~ j m ’ ) ( j m ’ ~ ,  an infinite renormalization of 
energy. In this limit the matrix elements become [ 1,2] 

m’=(m’la+alm’) 

[”+I]  =(m’+l la+ lm’)  

[m‘] = (m’-  Ilalm’) 

i.e. matrix elements of the q-analogues of the number, creation and destruction 
operators. Thus we reproduce the displaced oscillator (up to a constant which does 
not affect Berry’s phase calculation): 

H = hw 1 m‘lj, m’)(j, m ’ l + m  alj, m’+ l)(j, m’l 

+m a*lj, m’- I)(jm’() 

m’ 

= fiw(a+a + aa++ o * a )  



L954 Letter to the Editor 

with 

m B -  w = B, 3 B, G=lim---- 
j + m  B 

appearing as the j +  CO limit of (15 ) .  In a similar spirit we can obtain from 
geometrical phase factor exp[iym,( C)] for the displaced harmonic oscillator 

S:JS=O 

= [j]/ B2{[ m’+ 11 - [ m’]} dB, A dB, 

Bx/ B, Y = -m By/ B becomes which with X = 

ym, (C)= -2{[m‘+l]-[m’]} [[ d X A d Y  
s :as=c  

or finally after some algebraic manipulation we get 

fc (X d Y - Y dX) .  
cosh(2m’+ l ) s /2  

cosh s/2 Y m ’ ( C )  = - 

In the limit s + 0 (23) agrees with the result of Chaturvedi et al[5]. Note that quantum 
deformation of their system does not yield an m’ independent result for Berry’s phase. 
this is because the group theoretical multiplicative factors [ m’] are not uniformlly 
spaced (for s different from zero). 

Finally let us give the result of a Berry’s phase calculation one expects to obtain 
for the generalized harmonic oscillator 

H = i [ Z (  t )P’+  Y( t){PQ + QP} + X (  t)Q’] (24) 
where X, Y and 2 are adiabatically varying parameters (with XZ > Y 2  and 2 > 0), 
which is constructed from the q-momentum (P) and the q-position (Q)  operators [ 11 

(25) P = iJhTz (a+-  a )  

Q = JhTz ( U + +  a) .  

Classically, this is an example of a particle racing around an elliptical curve in the 
phase space. Jackiw [6], de Sousa Gerbert [7] and Biswas [8] added the total derivative 

_-  df  YQ’ 
d t  2 2  

- -- 

to the classical Lagrangian thereby inducing a canonical transformation to a new 
Hamiltonian 

H ’ = ~ { 2 ( P ’ ) 2 + ( X -  Y2/2- (d /d t ) (  Y/Z))Q”} (28) 
i.e. without the term linear in momentum which is required to ensure the existence of 
a complex wavefunction and hence a non-zero Berry’s phase. Through Berry’s phase 
cannot arise from H’,  this is present in a new guise. The instantaneous energy levels 
of H are 

E, = $ ( [ n ] + [ n + l [ ) h ( ~ ~ -  Y’)”~ (29) 
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while those of H' are 

E L = i( [ n ] + [ n + 1 ] ) h d w  Z d t  Z 

= ; ( [ n ] + [ n + l ] ) R h z 7  +.. .] 
where the dots refer to terms involving higher powers of the derivatives of the slow 
parameters. The difference between frequencies EL/ h and E,,/ h, when integrated over 
one time period as part of the dynamical phase, without Berry's modification, yields 
the geometrical phase 

Y d Z - Z d Y  

for a closed circuit in 2, Y, X space. What we have accomplished at a semiclassical 
level by means of the canonical transformation (27) can also be extended to the 
quantum level via the corresponding unitary transformation exp(if/ h ) ,  where f is 
given by (27) (for a similar result see Giavarini et a1 [ 9 ] ) .  In the limit s-+O, (31) goes 
over to the result obtained by Berry [ 101. 

Equations (S), (23) and (31) are the central results of this letter which are the 
q-analogues of corresponding results [3,5,10] for prototype calculations of the Berry 
phase. Since, loosely speaking, the deformation parameter q = exp(h) we expect that 
the semiclassical limit of the geometrical phase is not altered upon quantum deforma- 
tion of the classical system. 
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